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Realization of electron degeneracy effects as virtual upshifting in the ionization
energies in the classical Saha equation
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We explain that the effects of electron degeneracy on the calculation of ionization equilibrium can be
implemented and simply realized as virtual upshifting in the ionization energies in the classical Saha equation.
Previous quantitative findings indicating depressed quantum statistical ionization compared to classical ioniza-
tion are derived and abstracted in an analytical form. A simple ready-to-use approximate formula for the
upshifting in ionization energies due to partial degeneracy is presented and used to work a sample problem.
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I. INTRODUCTION

Accurate description of strongly coupled plasma systems
with completely or partially degenerate electrons is a subject
of great interest to both fundamental and applied sciences.
These plasmas do exist naturally in the compressed high-
density interiors of the evolved stars and are being generated
in the laboratory by virtue of different techniques and appli-
cations such as (a) irradiating solid targets by short laser
pulses or ion beams, (b) shock compression of metals, and
(c) discharges of high current densities in inertial confine-
ment experiments such as Z pinches, etc. The understanding
and interpretation of the observations and experimental re-
sults from the above-mentioned plasma systems necessitate
rigorous approaches for modeling the equation of state and
thermodynamic and radiative properties, taking into account
both of the coupling and degeneracy effects. The importance
of taking degeneracy and quantum effects into consideration
is well recognized in previous studies by Rogers e al. in the
“physical picture” (see, for example, [1]).

The routine approach to the calculation of ionization equi-
librium, within the chemical picture, for classical plasma
systems involves the construction and minimization of the
Helmbholtz free-energy function. Electrostatic interactions
among charged particles and other possible couplings and
corrections are usually condensed in a correction term—
excess free energy AF™—to be added to the classical ideal
free-energy function where

FB=Fig i+ Fosg+ AF™, (1)

n.

The term AF™ can be generally expressed as the sum of a
Coulombic or electrical part plus a non-Coulombic part
AFint=AFCou1+AFnon—Coul.

Heavy particles remain classical, even when the plasma
density is very high, and their free energy from Maxwell-
Boltzmann statistics can be written as
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where Kp is the Boltzmann constant, T is the absolute tem-

perature, V is the volume of the system, N, AM

:me—Twand U are the number, thermal wavelength, and
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PACS number(s): 52.25.Kn, 52.27.Gr, 51.30.+1

internal partition function of the ion  of the chemical ele-
ment j, respectively. The corresponding expression for the
classical ideal free energy of electrons is therefore

Fby = KpTN,[- 1 +In(N,A}2V)], (3)

where N, is the number of free electrons in the system.

This approach leads to the eminent advantage that the
free-energy minimization technique automatically engenders
thermodynamically consistent properties. Free-energy mini-
mization can also lead to a system of minimization equations
having the form of the well-known Saha equations with
shifting in the ionization energies for the {-fold ion in the
system given by [2,3]

Al;= (919N, = 1N+ I ON g, ) AF™. 4)

Supplemented by the constraints of electroneutrality and
conservation of nuclei, one can determine the detailed
plasma composition either by optimization algorithms of the
free energy function or by solving the set of coupled non-
ideal and classical Saha equations.

The aforementioned classical statistical approach falls
short at sufficiently high densities suffering major thermody-
namic instabilities. For example, the classical plasma pres-
sure would collapse at high densities due to the negative
electron-ion interaction energy; whereas in reality the pres-
sure remains positive. These instabilities are generally inhib-
ited in a plasma system by quantum effects due to the Fermi
pressure (exclusion principle) of the electrons. As a conse-
quence, the Fermi statistics has to be used for electrons in
order to take the degeneracy into consideration.

Recently, Molinari ef al. [4] considered the case of weak
degeneracy and cast the Fermi distribution function into an
approximate form of a Maxwellian distribution with a cor-
rection term linear in the Sommerfield parameter and they
derived an approximately corrected Saha equation. The non-
linear correction term in Molinari et al. corrected Saha equa-
tion vanishes as the Sommerfield parameter goes to zero.
However, their quantitative results showed the absolute rela-
tive error resulting from ignoring the degeneracy and calcu-
lating the ionization equilibrium from the classical Saha
equation for hydrogenic plasma. It was not clear whether the
degeneracy of free electrons will enhance or depress ioniza-
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tion, although it was shown to be important for high-density
and low-temperature region.

In an earlier and more complete work, Wilhelm and Hong
[5] considered the partial degeneracy of free electrons to any
degree of degeneracy and derived a quantum statistical Saha
equation as given in Eq. 9 in Ref. [5]. The form of Wilhelm
and Hong equation—though correct—did not allow direct
analytical conclusion about the effects of degeneracy on the
calculation of ionization equilibrium. Conclusions were ob-
tained only from quantitative results for the studied cases (Cs
and H plasmas), where a comparison of the quantum statis-
tical and classical Saha ionization equations indicated that
degeneracy effects in the electron gas suppress somewhat the
ionization at high densities and that the classical Saha equa-
tion can be satisfactorily used at low to moderate densities.

In this Brief Report, we present the simple realization of
quantum statistical (degeneracy) effects on the ionization
equilibrium as a virtual shifting in the ionization energies.
The condensation of the corrections in such a simple well-
understood term allows a direct analytical abstraction of the
effect of degeneracy on the ionization equilibrium as shown
below.

II. DEGENERACY AND IONIZATION EQUILIBRIUM

For partially degenerate electrons, the free energy of an
ideal Fermi gas is used for quantum electrons to replace the
corresponding classical term in Eq. (3), where

Fie]% == PeV+ Ne/-l’e,id
= — QKTVIA) Lyt i/ KpT) + Nepteia- (5
In which P, and w, ;4 represent the pressure and chemical

potential of the ideal Fermi electron gas, respectively, and 7,
is the complete Fermi-Dirac integral,

Ly
IV(X)_F(V+1)L xp -+ 1 (6)

The electron chemical potential w, ;4 is related to the number
of free electrons in the system by

N, = QVIADI oo i/ K5T), (7)

is the average thermal wavelength of the

where A,= WZ—KJ
electrons.

A simple way to consider and to implement electron de-
generacy in the Saha equation and the corresponding thermo-
dynamic functions is to add to the free-energy function,
which contains Eq. (5) instead of the classical expression for
the electron [Eq. (3)], the classical expression FC3, and sub-
tract it again. The final expression for the free-energy func-
tion will be the same as that for the classical plasma plus a
correction term (FO%§—FC3). This correction term can be
used to find the virtual change in the ionization energies as
explained above. Noting that the degeneracy correcting term
(Fﬂi%—FSfd) does not depend on the heavy particle densities
indicates that the shifting in the ionization energies resulting
from considering the electron degeneracy will be the same
for all ions and can be found as follows
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where I7),(x) is the inverse Fermi-Dirac integral. One can
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investigate the sign of the term —= in Eq. (8) by considering
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The integrands of both K; and K, are positive, finite, and
continuous. For x=x" the integrand of K, shows higher val-
ues than that of K; over the whole domain of integration,
which implies that

Ky(x) > K, (x" =x). (11)

Inspection of the integrand of K; shows that the integrand
and consequently K, increases with the increase of x’ (for
both positive and negative values of x’). Now, in order to
make K, and K, equal (i.e., K;=K,=p), the argument of K,
(i.e., x") must be undoubtedly greater than the argument of
K, (i.e., x); that is,

[x' =K' (B)] > [x=K;,"(B)]

or

I5(B) > In(B). (12)

The superscript (—1) used with K, K,, and I/, above refers
to the inverse of the function. Equation (12) directly implies
that the term %?;‘g‘ in Eq. (8) is always positive with the im-
plication that considering electron degeneracy virtually el-
evates the ionization energies in the classical Saha equation.
It has to be noted that one can arrive at the same analytical
result from Wilhelm and Hong’s equation by simple alge-
braic manipulation of their equation.

For practical use of Eq. (8), we provide herein a ready-to-
use approximate expression for the shifting in the ionization
energies resulting from degeneracy effects. The expression is
derived using Zimmermann’s [6] approximation of the in-
verse Fermi-Dirac integral, where one can write

Al
—%2 _[_1+0.176 8y — 0.001 65y*+ 0.000 031y°]
KT
1
+y| —+0.176 8 —0.003 3y + 0.000 093y>
y
NA]
for y= <55, (13)
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Al
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+y[0.483 6y~ + 1.360 6y - 1.7y73]
for y=5.5. (13)

III. SAMPLE PROBLEM

The above approximate expression [Eq. (13)] is used to
study the electron degeneracy effects on the composition of
dense helium plasma. The customary lowering of ionization
energy for the dense plasma resulting from the electric or
Coulombic correction to the free energy is taken from Zim-
merman and More [7]. Details about the calculation of the
partition functions and the algorithm used to solve the set of
governing equations can be found elsewhere [8].

Figure 1 shows the values of the average ionization state,
L., versus the number density of heavy particles, ny, for
2 eV He plasma calculated considering the electron degen-
eracy in comparison to the results from the classical noncor-
rected Saha equation. As can be noted from the figure, the
general effect of electron degeneracy is to depress ionization
as analytically predicted above. The degeneracy effects be-
come significant and cannot be overlooked at high densities,
while the classical Saha equation can still be satisfactorily
used for low to intermediate densities which agrees with Wil-
helm and Hong’s quantitative findings.

IV. CONCLUSIONS

The effects of electron degeneracy on the calculation
of ionization equilibrium are simply realized as virtual
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FIG. 1. (Color online) Values of the average ionization state {,,
for 2 eV He plasma calculated considering the electron degeneracy
(solid line) in comparison to the results from the classical noncor-
rected Saha equation (dotted line).

upshifting in the ionization energies in the classical Saha
equation. A simple ready-to-use approximate formula for the
upshifting in ionization energies due to partial degeneracy is
presented and used to work a sample problem.
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